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Generalized density functional theory

M Biagini
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Abstract. The density functional formalism of Hohenberg, Kohn and Sham can be applied
only to the calculation of the ground-state properties of the system. In general, the energy of the
electronic excitations can be obtained from the self-energy operator6(r, r′, ω), which requires
a much larger computational effort. Recently, Fritsche has proposed a generalization of the
density functional theory to excited states, that has been applied to the calculation of the band
gaps of solid rare gases, alkali halides, diamond and silicon. We show that Fritsche’s theory is
incorrect since it is in strong disagreement with the Kohn–Sham theory when the ground state
properties are considered.

Much progress has been made in recent years in the calculation of structural and electronic
properties of solids from first principles. This progress has been made possible by density
functional theory [1, 2] in which the massive problem of calculating the ground state of
the true system of interacting electrons is rigorously transformed into that of finding the
ground state of a much simpler system of non-interacting electrons moving in an effective
local potential. In general, the energy of the electronic excitations can be obtained from
the self-energy operator6(r, r′, ω) which requires a much larger computational effort. An
alternative approach has been proposed by Fritsche [3], which is based on a generalization
of the density functional theory to the excited states of the system. Within such an approach,
the energy of the electronic excitations in insulators and semiconductors can be expressed as
a sum of the Kohn–Sham gap and a correction that is usually of the same order of magnitude.
Fritsche and Gu [4] have applied the latter method to the calculation of the band gaps of
solid rare gases, alkali halides, diamond and silicon, obtaining values in relatively good
agreement with the GW results.

We will show that Fritsche’s generalized density functional theory is incorrect since it
is in strong disagreement with the Kohn–Sham theory: this result can be seen as follows.

The N -electron wavefunction9n is a solution of the Schrödinger equation

H9n = En9n (1)

where

H =
N∑

i=1

[
−∇2

2
+ Vext (ri )

]
+ 1

2

∑
i,j
i 6=j

1

|ri − rj | (2)

with Vext and En denoting the external potential and the total energy of thenth excited
eigenstate, respectively. The one-particle and two-particle densities are given by the
following expressions

ρnσ (r) = N

∫
|9n(x, x2, . . . ,xN)|2 d4x2 · · · d4xN (3)
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ρ2,nσ ′σ (r′, r) = N(N − 1)

∫
|9n(x

′, x, x3, . . . ,xN)|2 d4x3 · · · d4xN , (4)

wherex ≡ (r, σ ) is a shorthand notation for the real space and spin coordinates, and∫
. . . d4x ≡

∑
σ

∫
. . . d3r.

The electron–electron interaction energy〈Ve−e〉 can be written as

〈Ve−e〉n = 1

2

∑
σ ′,σ

∫ ∫
ρ2,nσ ′σ (r′, r))

|r′ − r| d3r ′ d3r. (5)

If the two-particle density is partitioned as follows

ρ2,nσ ′σ (r′, r) = ρnσ ′(r′)ρnσ (r) + ρ̃2,nσ ′σ (r′, r) (6)

equation (5) becomes

〈Ve−e〉n = 1

2

∑
σ ′,σ

∫ ∫
ρnσ ′(r′)ρnσ (r)

|r′ − r| d3r ′ d3r + E(n)
xc . (7)

Equation (7) defines the exchange–correlation energy for thenth excited eigenstate

E(n)
xc = 1

2

∑
σ ′,σ

∫ ∫
ρ̃2,nσ ′σ (r′, r))

|r′ − r| d3r ′ d3r. (8)

The above definition does not coincide with the definition of the exchange–correlation energy
given by Kohn and Sham [2]〈

− ∇2

2
+ Ve−e

〉
= T0[n] + 1

2

∑
σ ′,σ

∫ ∫
ρnσ ′(r′)ρnσ (r)

|r′ − r| d3r ′ d3r + EKS
xc

whereT0[n] is the kinetic energy of a system of non-interacting electrons, with densityn(r).
The two expression are clearly different since it is well known that

T0[n] 6=
〈
− ∇2

2

〉
.

Fritsche [3, 5] claims that for any eigenstate9n one can uniquely construct a function
0(σ ′,σ )

n (r′′, r′, r) with the property that

δρ̃2,nσ ′σ (r′′, r′
) =

∫
0(σ ′,σ )

n (r′′, r′, r)δρnσ (r) d3r (9)

whereδρ̃2,nσ ′σ (r′′, r′) and δρnσ (r) are the changes of the two- and one-particle densities,
associated with a variation of the wavefunctionδ9n. We point out that Fritsche has given
no rigorous proof of equation (9). The change of the total electrostatic energy can be put
in the following form

δ〈V 〉n =
∑

σ

∫
[Vext (r) + V

(n)
H (r) + V (n)

xc (r, σ )]δρnσ (r) d3r (10)

whereV
(n)
H (r) is the Hartree potential and

V (n)
xc (r, σ ) = 1

2

∑
σ ′

∫ ∫
0(σ ′,σ )

n (r′′, r′, r)

|r′′ − r′| d3r ′′ d3r ′ (11)
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is the exchange–correlation potential corresponding to thenth excited eigenstate. From
equations (8), (9) and (11) it follows that

δE(n)
xc =

∑
σ

∫
V (n)

xc (r, σ )δnσ (r) d3r (12)

which is usually written

V (n)
xc (r, σ ) = δE(n)

xc

δnσ (r)
. (13)

Fritsche’s generalized Kohn–Sham equations are then defined as follows[
−∇2

2
+ Vext (r) + V

(n)
H (r) + V (n)

xc (r, σ )

]
ψj σ (r) = ε

(n)
iσ ψj σ (r). (14)

We proved above that Fritsche’s exchange–correlation energyE(n)
xc is different from the

Kohn–Sham exchange–correlation energy. It also follows that their functional derivatives
(i.e. V Frit

xc andV K−S
xc ) are different. In fact, one finds that

V Frit
xc (r, σ ) = V K−S

xc (r, σ ) + δ

δnσ (r)

(
T0[n] −

〈
− ∇2

2

〉)
. (15)

If V Frit
xc (r, σ ) andV K−S

xc (r, σ ) were coincident, it would follow thatT0[n] −〈−∇2/2〉 = k,
wherek is a constant independent ofnσ (r). This is clearly false (for instance, in the case
of two electrons enclosed in a potential well, the quantityT0[n] − 〈−∇2/2〉 = k tends to
zero when the dimensions of the potential well tend to infinity, which implies thatk is a
functional ofnσ (r)). Besides, if one supposes thatV Frit

xc (r, σ ) = V K−S
xc (r, σ ) + k, where

k is a constant independent ofr, it would follow that

T0[n] − 〈−∇2/2〉 = k
∑

σ

∫
nσ (r) d3r = kQtot

which is again clearly false.
The exchange–correlation potential in the Kohn–Sham equations represents the

correction to the external potential, necessary in order to obtain the same spin densities in
the non-interacting system as in the interacting system. Since the Hohenberg–Kohn theorem
prohibits two potentials from having the same ground-state density for non-interacting
electrons, the exchange–correlation potential is uniquely determined by the spin densities
(except for an additional constant term). It follows that the self-consistent solution of
Fritsche’s equations (14) gives spin densities different from those obtained from the solution
of the Kohn–Sham equations. I have therefore proved that, for a given external potential
Vext (r), Fritsche’s equations (14) and the Kohn–Sham equations give different spin densities
when the ground state is considered.

We conclude that Fritsche’s theory is in contradiction with the Kohn–Sham theory, so
that Fritsche’sV n

xc (which relies on the existence of the function0(σ ′,σ )
n of equation (9))

cannot exist. The present criticism applies to [3–5] since the results presented by Fritsche
in such references are all based on the assumption of the existence of the function0(σ ′,σ )

n .
In [4] the authors introduce integration over the coupling constant into the theory. This

leads to problems in the formulation used in [3]. In fact, the coupling-constant approach
would allow the definition of an exchange–correlation energy functional exactly equal to
the Kohn–Sham functional, but it would also require a modification of the kinetic energy
term, in order to have the same total energy functional. On the other hand, in Fritsche’s
theory the kinetic energy term cannot be changed, otherwise equation (14) in [10] would
not be correct. Since Fritsche’s derivation is based on equation (14) in [10], the whole
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theory should then be proved from the beginning. We stress that the resolution of the above
problems has not been explained in [4].
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